

Towards the Rebirth of the NASA GISS Land (Surface) Model: Challenges and Opportunities

Dr. Michael J. Puma

Columbia University Center for Climate Systems Research
NASA Goddard Institute for Space Studies

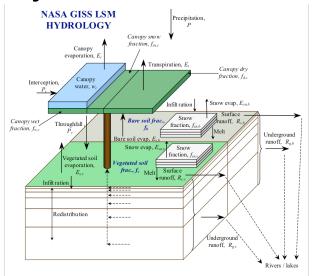
May 6, 2009
NASA GISS Lunch Seminar

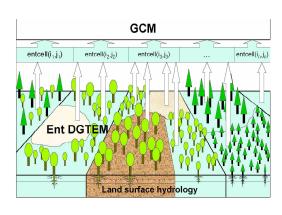
Collaborators

NASA Goddard Institute for Space Studies

- Nancy Y. Kiang
- Igor Aleinov

NASA Goddard Space Flight Center

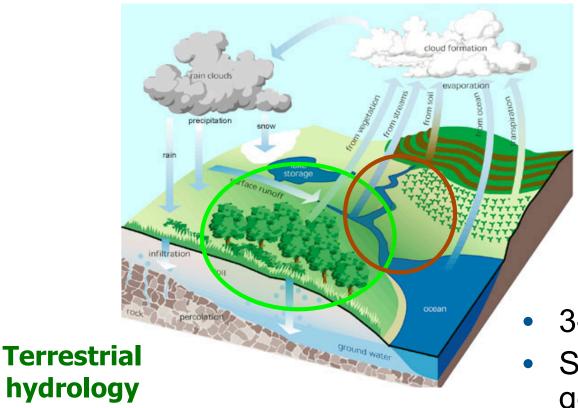

Randy Koster



Motivation

 Coupling the Ent Dynamic Global Terrestrial Ecosystem model with the GISS Land Model

- Kevin Trenberth in Nov. 2008 @ GISS 3rd Floor: doesn't trust the predictions of the GISS land model
 - Reduce confidence in modeling community
 - Marginalization of the GISS land model



- Introduction
- Existing GISS Land Model
 - Opportunities for improvement
- Current model development
 - Ecosystem-scale analyses
 - Global-scale analyses
- Development framework

Hydrologic Land Processes

Fluvial hydrology

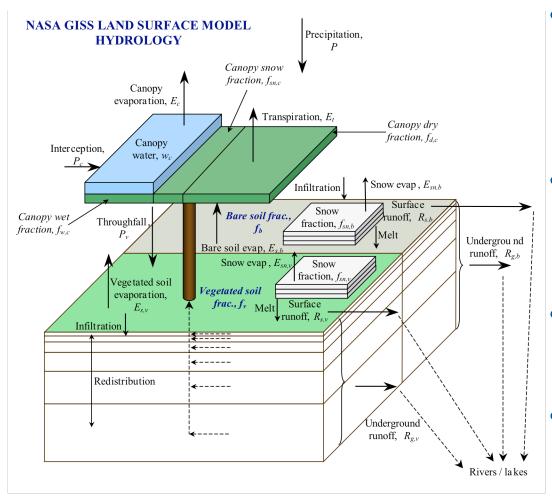
3-D land surface

 Significant spatial heterogeneity soil, vegetation, and topography

- Surface runoff
- Ecosystem dynamics

Importance of land model

- Water cycle components interact with and affect:
 - Carbon (and nitrogen) cycle
 - Fire dynamics
 - Dust and trace gas emissions
 - Vegetation dynamics
- Partitions water & energy into storage reservoirs.
- Controls the release of water vapor and energy to the atmosphere.



- Introduction
- Existing GISS LSM
 - Opportunities for improvement
- Current model development
 - Ecosystem-scale analyses
 - Global-scale analyses
- Development framework

Current NASA GISS Land Model

- Divided into bare-soil and vegetated sections, which are conceptualized as interspersed
- A single water & energy balance for all vegetation (patches) within a grid cell
- Soil column is 3.5 m thick and 6 layers everywhere
- Explicit solution of heat & water transport in the soil column

Options for Improvement

 Continue with a one-dimensional representation (e.g. NCAR)

$$T_{1D}, R_{1D}$$

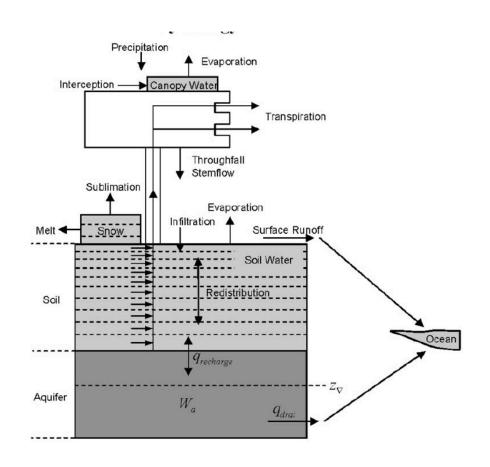
- Heterogeneity (e.g. soil, topography)
 through statistical approaches
- Catchment-based model of GSFC T_G (Koster et al. 2002)

$$T_{GSFC} > T_{1D}$$

$$R_{GSFC} > R_{1D}$$

 New approach to capture the heterogeneity of the land's soil, vegetation, and topography

$$T_{INNOVATIVE} > T_{GSFC}$$
 $R_{INNOVATIVE} > R_{GSFC}$



1D example: Community Land Model

Oleson et al (2008):

- Improved canopy integration scheme (Ent DGTEM)
- Scaling of canopy interception
- TOPMODEL-based model for surface and subsurface runoff
- Groundwater model for determining water table depth
- New frozen soil scheme
- New surface data sets and parameterizations (new landcover maps, LAI, SAI, and soil color based on MODIS products) (Lawrence and Chase, 2007)

- Introduction
- Existing GISS LSM
 - Opportunities for improvement
- Current model development
 - Ecosystem-scale analyses
 - Global-scale analyses
- Development framework

Framework

- Land model must be tested offline!!
- GISS land model needed to separated from the GISS GCM
- Setup needed to test offline at 2 spatial scales
 - Ecosystem scale
 - Global scale
- FLUXNET comparisons
- Global meteorological reanalysis datasets
 - 1986-1995 data from the GSWP2
 - 50+ years data from Princeton group

Current modifications

- Poor simulation of veg. biogeography (Oleson, 2008)
 - Global-scale: forest cover is underestimated in favor of grasses due to dry soil
 - Amazon: less broadleaf evergreen & more deciduous trees
- Problems
 - Inaccurate evapotranspiration partitioning (transpiration, soil evaporation, canopy evaporation)
 - Amazon soil moisture

	GSWP2 Mean		
	of models		Old NCAR
	(Dirmeyer et	Choudhury	forced
	al., 2005)	et al. 1998	w/obs
Transpiration	48%	52%	13%
Soil Evap.	36%	28%	44%
Canopy Evap.	16%	20%	43%

Vegetation and evapotranspiration

- Poor simulation of veg. biogeography (Oleson, 2008)
 - Global-scale: forest cover is underestimated in favor of grasses due to dry soil
 - Amazon: less broadleaf evergreen & more deciduous trees
- Problems: inaccurate ET partitioning, Amazon soil moisture

	GSWP2 Mean		
	of models		Old NCAR
	(Dirmeyer et	Choudhury	forced
	al., 2005)	et al. 1998	w/obs
Transpiration	48%	52%	13%
Soil Evap.	36%	28%	44%
Canopy Evap.	16%	20%	43%

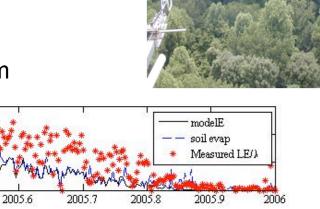
Modifications to GISS LM hydrology

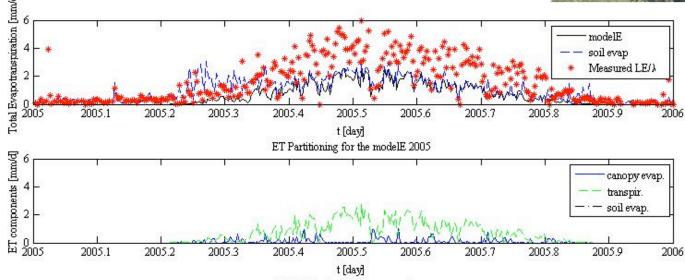
- Evaporation from vegetated soil previously none
 - canopy sheltering effects: modify atmospheric transfer coefficient based on leaf area index
- Temporal correlation in storm position (Koster and Suarez, 1996)
 - Increase precipitation throughfall
 - reduces wet canopy fraction
- Scheme to account for wet-layer effects (i.e. stomatal blocking) on water & carbon fluxes
 - Depends on plant functional type

Morgan Monroe State Forest

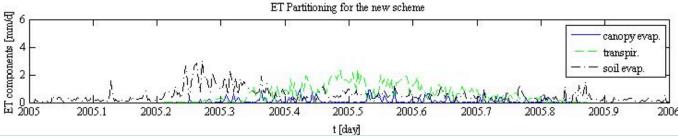
- Broadleaf deciduous forest in Indiana
- Temperate continental climate:

2005.1

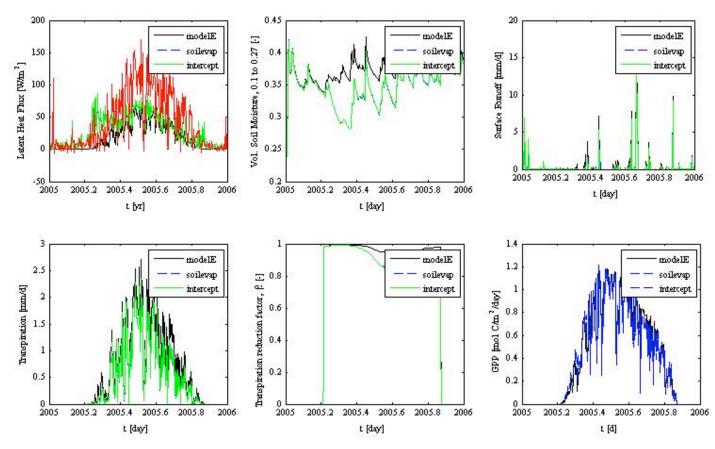

mean annual temp. ≈ 12.4 °C,


2005.2

mean annual precipitation ≈ 1094 mm

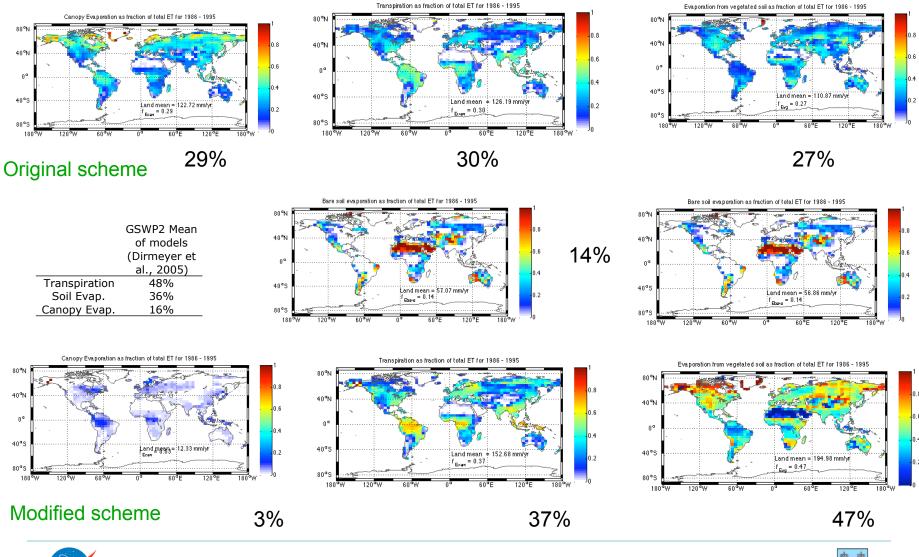

2005.3

2005.4


2005.5

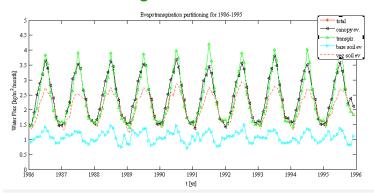
MMSF - 2005

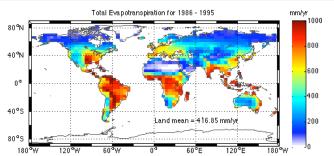
- Total evapotranspiration is underestimated during growing season
- Different schemes have minimal effect on productivity

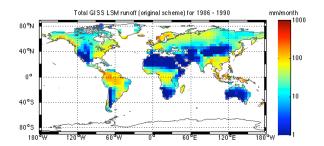


- Introduction
- Existing GISS LSM
 - Opportunities for improvement
- Current model development
 - Ecosystem-scale analyses
 - Global-scale analyses
- Development framework

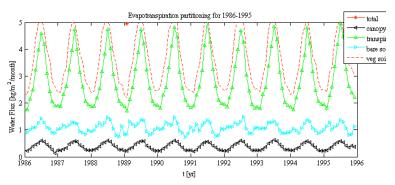
Evapotranspiration partitioning

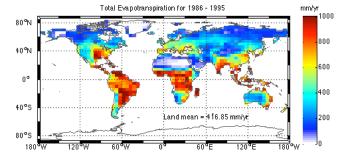


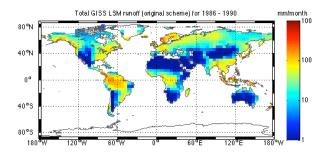




Hydrologic components


Original Scheme




Modified Scheme

Total ET: No Change

Runoff: No change

- Introduction
- Existing GISS LSM
 - Opportunities for improvement
- Current model development
 - Ecosystem-scale analyses
 - Global-scale analyses
- Development framework

Development Framework: 1D model

Surface Runoff (Topography-based TOPMODEL)

Vegetation Water Dynamics (e.g. more wet-layer extraction to compensate for dry layers)

Incorporate Irrigation; Infiltration Enhancement (Macropore Flow)??

Implicit solution of water and heat equation

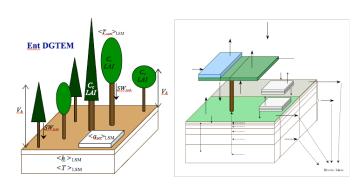
Update:
Soils data
Land-cover data (Ent)
LAI and SAI data

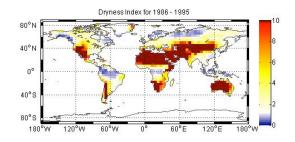
Soil-column layering; Water table / groundwater Canopy boundary layer; Surface boundary layer of the atmosphere

Return on Investment

ROI= Gain from Investment-Cost of Investment

Cost of Investment


- Cost of Investment
 - 1 or 2 additional researchers
- Gain from Investment
 - Increased recognition in the modeling community
 - Postdoctoral researchers
 - Better runoff predictions
 - Better carbon cycle
 - Better ecosystem dynamics
 - Better climate predictions
 - Potential to create a new, innovation land model



Questions?

